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Course Objectives: 
This course enable the students to define basic properties of formal languages, explain the 

Regular languages and grammars, inter conversion, Normalizing CFG , describe the 

context free grammars, minimization of CNF, GNF and PDA , designing Turing 

Machines and types of Turing Machines, church’s hypothesis counter machines, LBA, P 

and NP problems and LR grammar. 

 
MODULE I: Fundamentals and Finite Automata [10 Periods] 

Review of Mathematical Theory-Sets, functions, logical statements, proofs, relations, 

languages, Mathematical induction, strong principle, Recursive definitions. 

Regular Languages and Finite Automata- Regular expressions, regular languages, 

applications, Types of grammar: 0, 1, 2 and 3 Automata With output-Moore machine, 

Mealy  machine,  Finite automata, memory requirement in a recognizer, definition,  

union, intersection and complement of regular languages, Non Determinism Finite 

Automata, Conversion from NFA to FA, Kleene’s Theorem, Minimization of Finite 

automata. 

MODULE II:  Context Free Grammar (CFG) and PDA [10 Periods] 

Regular Grammar- Definition, Unions Concatenations And Kleen’s* of Context free 

language Regular grammar, Derivations and Languages, Relationship between derivation 

and derivation trees, ambiguity. 

CFG- Unambiguous CFG and Algebraic Expressions, Bacos Naur Form (BNF), Normal 

Form – CNF, Deterministic PDA, Equivalence of CFG and PDA, Context free language 

(CFL), Pumping lemma for CFL. 

 

MODULE III: Turing Machine and Compiler Basics [09 Periods] 
A: Turing Machine : TM Definition, Model of Computation and Church Turning 

Thesis, computing functions with TM, Combining TM, Variations Of TM, Non 

Deterministic TM, Universal TM, Recursively and Enumerable Languages, Context 

sensitive languages and Chomsky hierarchy. 

B: Basics of Compiler and Lexical Analysis : A Simple Compiler, Difference between 

interpreter, assembler and compiler. Overview and use of linker and loader , types of 

Compiler, Analysis of the Source Program, The Phases of a Compiler, The Grouping of 



Phases, Compiler-Construction Tools.The Role of the Lexical Analyzer, Input Buffering, 

Specification of Tokens, Recognition of Tokens, A Language for Specifying Lexical 

Analyzers, Design of a Lexical Analyzer Generator, Optimization of DFA-Based Pattern 

Matchers 

 
MODULE IV: Syntax Analysis [09 Periods] 

Introduction- The Role of the parser, Context-Free Grammar, Writing a grammar,Top- 

down Parsing, Bottom-Up Parsing, Operator-Precedence Parsing, Lr Parsers, Using 

Ambiguous Grammars, Parser Generators. 

Syntax-Directed Translation: Syntax-Directed Definitions, Construction of Syntax 

Trees, Bottom-Up Evaluation of S- Attributed Definitions, L-Attributed Definitions, Top 

Down Translation, Analysis of Syntax- Directed Definitions , Type Systems, 

Specification of a Simple Type Checker, Equivalence of Type Expressions, Type 

Conversions. 

 
MODULE V: Code Optimization and Genaration [10 Periods] 

Intermediate Languages , The Principal Sources of Optimization, Optimization of Basic 

Blocks, Loops in Flow Graphs, Iterative Solution of Data-Flow Equations, Code- 

Improving Transformations, Data-Flow Analysis of Structured Flow Graphs, Efficient 

Data-Flow Algorithms, Symbolic Debugging of Optimized Code. Issues in the Design of 

a Code Generator, The Target Machine, Run-Time Storage Management, A Simple Code 

Generator, Register Allocation and Assignment, The DAG Representation of Basic 

Blocks, Peephole Optimization, Generating Code from DAGs, Dynamic Programming 

Code-Generation Algorithm, Code-Generator Generators. 

 

TEXT BOOKS: 
1. John C. Martin, “Introduction to Languages and Theory of Computation”, TMH; 

Third Edition. 

2. Alfred Aho, Ravi Sethi, Jeffrey D Ullman, “Compilers Principles, Techniques and 

Tools”, Pearson Education Asia. 

 

REFERENCES: 
1. Adesh K. Pandey “An introduction to automata theory and formal 

languages”, Publisher: S.K. Kataria and Sons. 

2. Deniel I. Cohen, Joh Wiley and Sons, Inc “Introduction to computer theory”. 

3. Allen I. Holub “Compiler Design in C”, Prentice Hall of India. 

4. J.P. Bennet, “Introduction to Compiler Techniques”, Tata McGraw-Hill, 

Second Edition. 

 

E –RESOURCES: 



1. https://www.iitg.ernet.in/dgoswami/Flat-Notes.pdf 

2. https://books.google.co.in/books?isbn=8184313020 

3. http://www.jalc.de/ 

4. https://arxiv.org/list/cs.FL/0906 

5. http://freevideolectures.com/Course/3379/Formal-Languages-and-Automata-Theory 

6. http://nptel.ac.in/courses/111103016/ 

 

Course Outcomes: 
At the end of the course, students will be able to 

1. Define the theory of automata types of automata and FA with outputs. 

2. Differentiate regular languages and applying pumping lemma. 

3. Classify grammars checking ambiguity able to apply pumping lemma for CFL 

various types of PDA. 

4. Illustrate Turing machine concept and in turn the technique applied in computers. 

5. Analyze P vs NP- Class problems and NP-Hard vs NP-complete problems, LBA, 

LR Grammar, Counter machines, Decidability of Problems. 

 
 

CO- PO, PSO Mapping 

(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak 

 Programme Outcomes(POs) P S O s 

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 

CO1 3 3          2 2   

CO2 3 2          2  2  

CO3 3 2          2  2  

CO4 3 2          2 2   

CO5 3 3          2 2   
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UNIT -1 
 

Fundamentals 

 

Symbol – An atomic unit, such as a digit, character, lower-case letter, etc. 
Sometimesa word.[Formal language does not deal with the “meaning” of 
thesymbols.] 

 

Alphabet – A finite set of symbols, usually denoted byΣ. 

Σ ={0, 1} 

Σ = {0, a,9, 4} 

Σ = {a, b, c,d} 

 
String – A finite length sequence of symbols, presumably from 
some alphabet. w=0110 

y=0aa 

x=aabcaa 

https://www.iitg.ernet.in/dgoswami/Flat-Notes.pdf
https://books.google.co.in/books?isbn=8184313020
http://www.jalc.de/
https://arxiv.org/list/cs.FL/0906
http://freevideolectures.com/Course/3379/Formal-Languages-and-Automata-Theory
http://nptel.ac.in/courses/111103016/


z = 111 

 

Special string: ε (also denoted by λ) 

Concatenation: wz = 0110111 
Length: |w| = 4 |ε|=0 |x| = 6 

R 
Reversal: y = aa0 

Some special sets ofstrings: 
* 

Σ All strings of symbols fromΣ 

+ * 
Σ Σ -{ε} 
Example: Σ = {0,1} 
* 

Σ = {ε, 0, 1, 00, 01, 10, 11, 000, 001,…} 

+ 
Σ = {0, 1, 00, 01, 10, 11, 000, 001,…} 

A languageis: 
A set of strings from some alphabet (finite or infinite). In 

* 
otherwords, Any subset L ofΣ 

Some speciallanguages: 

{}The empty set/language, containing nostring. 

{ε}A language containing one string, the emptystring. 
 

Examples: 
Σ = {0,1} 

* 
L = {x | x is in Σ and x contains an even number of 
0‟s} Σ = {0, 1, 2,…, 9, .} 

* 
L = {x | x is in Σ and x forms a finite length real number} 
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Σ 

= {0, 1.5, 9.326,…} 

Σ = {a, b, c,…, z, A, B,…, Z} 
* 

L = {x | x is in Σ and x is a Pascal reserved word} 

= {BEGIN, END, IF,…} 

* 
Σ = {Pascal reserved words} U { (, ), ., :, ;,…} U {Legal Pascal identifiers} L = {x | x is in Σ and x 
is a syntactically correct Pascal program} 

 
Σ = {English words} 

*
L = {x | x is in  and x is a syntactically correct 

English sentence}              Regular Expression 

• A regular expression is used to specify a language, and it does soprecisely. 

• Regular expressions are veryintuitive. 

• Regular expressions are very useful in a variety ofcontexts. 

• Given a regular expression, an NFA-ε can be constructed from itautomatically. 

• Thus, so can an NFA, a DFA, and a corresponding program, allautomatically! 

Definition: 

Let Σ be an alphabet. The regular expressions over Σare: 

Ø Represents the empty set {} 

Ε Represents the set{ε} 

Represents the set {a}, for any symbol a inΣ 
Let r and s be regular expressions that represent the sets R and S, respectively. 

r+sRepresents the set RUS (precedence3) 

rsRepresents thesetRS (precedence2) 

r* Represents thesetR* (highest precedence) 

(r) Represents thesetR (not an op, providesprecedence) 

If r is a regular expression, then L(r) is used to denote the correspondinglanguage. 

 

Examples: 

Let Σ = {0,1} 

(0 +1)* All strings of 0‟s and1‟s0(0 +1)* All strings of 0‟s and 1‟s, beginning with 
a0 (0 +1)*1 All strings of 0‟s and 1‟s, ending with a1 

(0 + 1)*0(0+1)* All strings of 0‟s and 1‟s containing at least one 0 (0 + 1)*0(0 + 
1)*0(0+1)* All strings of 0‟s and 1‟s containing at least two 
0‟s (0+1)*01*01* All strings of 0‟s and 1‟s containing at least two 

0‟s (101*0)* All strings of 0‟s and 1‟s containing an even number of 0‟s 

1*(01*01*)* All strings of 0‟s and 1‟s containing an even number of 0‟s 

(1*01*0)*1* All strings of 0‟s and 1‟s containing an even number of0‟s 

Identities: 

 
1. Øu = uØ=Ø Multiply by0 

2. εu = uε=u Multiply by1 
 

3. Ø* =ε 
 

4. ε* =ε 
 

5. u+v =v+u 
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6. u + Ø =u 

 

7. u + u = u 

8. u* =(u*)* 

9. u(v+w) =uv+uw 

 

10. (u+v)w =uw+vw 

 

11. (uv)*u = u(vu)* 

 
12. (u+v)* = (u*+v)* 

=u*(u+v)* 

 

=(u+vu*)* 

= (u*v*)* 

 

=u*(vu*)* 

 

=(u*v)*u*  

Finite State Machines 

A finite state machine has a set of states and two functions called the next-state 

function and the outputfunction 
The set of states correspond to all the possible combinations of the internal storage 

n 
If there are n bits of storage, there are 2 possiblestates 

The next state function is a combinational logic function that given the inputs 
and the current state, determines the next state of thesystem 

The output function produces a set of outputs from the current state and theinputs 

 
• There are two types of finite statemachines 

• In a Moore machine, the output only depends on the currentstate 

• While in a Mealy machine, the output depends both the current state and the currentinput 

• We are only going to deal with the Mooremachine. 

• These two types are equivalent incapabilities 

A Finite State Machine consistsof: 
Kstates:S = {s1, s2, … ,sk}, s1 is initial state Ninputs:I = {i1, 

i2, …,in} 

Moutputs:O = {o1, o2, …,om} 

Next-state function T(S, I) mapping each current state and input to next state 
Output Function P(S) specifies output 

Finite Automata 
 

• Two types – both describe what are called regularlanguages 

• Deterministic (DFA) – There is a fixed number of states and we 
can only bein one state at atime 
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• Nondeterministic (NFA) –There is a fixed number of states but 
wcan bein multiple states at onetime 

 
• While NFA‟s are more expressive than DFA‟s, we will see that 

addingnondeterminism does not let us define any language that 
cannot be defined by aDFA. 

 
• One way to think of this is we might write a program using a NFA, but 

then when it is “compiled” we turn the NFA into an equivalentDFA. 

 

Formal Definition of a Finite Automaton 
 

• Finite set of states, typicallyQ. 

• Alphabet of input symbols, typically∑ 
• O ne  s  ta te  is  the  s  ta r t / in i t ia l  s  ta te , ty p ic a l ly  q 0  /  /  q 0  ∈Q  
• Z ero  o r  m o r e  f  ina l /a cc e p tin g  s  ta te s ;  th e  s e t  is  ty p ica l ly  F .  / /  F⊆ Q  

• A transition function, typicallyδ. Thisfunction 

• Takes a state and input symbol asarguments. 

 

Deterministic Finite Automata (DFA) 
 

• A DFA is a five-tuple: M = (Q, Σ, δ, q0, 

F) Q=A finite set ofstates 

Σ=A finite inputalphabet 

q0=The initial/starting state, q0 is inQ 

F=A set of final/accepting states, which is a subset ofQ 

Δ=A transition function, which is a total function from Q x Σ toQ 

δ: (Q x Σ)–>Q δ is defined for any q in Q and s in Σ, and δ(q,s)=q‟is equal to 
another state q‟ inQ. 
Intuitively, δ(q,s) is the state entered by M after reading symbol s while in state q. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• LetM=(Q,Σ,δ,q,F)beaDFAandletwbeinΣ*.ThenwisacceptedbyMiff 
0 
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δ(q ,w) = p for some state p in F. 

0 

• Let M = (Q, Σ, δ, q , F) be a DFA. Then the language accepted by M is theset: 0 

L(M) = {w | w is in Σ* and δ(q ,w) is in F} 

 
 

• Another equivalentdefinition: 

L(M) = {w | w is in Σ* and w is accepted by M} 
 

• Let L be a language. Then L is a regular language iff there exists 
a DFA M such that L =L(M). 

 
Notes: 

• A DFA M = (Q, Σ, δ,q0,F) partitions the set Σ* into two sets: 

L(M)and Σ* -L(M). 

 

• If L = L(M) then L is a subset of L(M) and L(M) is a subset ofL. 

 
• Similarly, if L(M1) = L(M2) then L(M1) is a subset of L(M2) and L(M2) 

is a subset of L(M1). 
 

• Some languages are regular, others are not. For example,if 
L1 = {x | x is a string of 0's and 1's containing an even number of 1's} and L2 = {x | x = 

n n 
0 1 for some n >= 0}then L1 is regular but L2 is not. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nondeterministic Finite Automata (NFA) 

An NFA is a five-tuple: M = (Q, Σ, δ, q0,F) 
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Q A finite set ofstates 

ΣA finite inputalphabet 

q0The initial/starting state, q0 is inQ 

FA set of final/accepting states, which is a subset ofQ 

δA transition function, which is a total function from Q x Σ to2 

Q 
δ: (Q x Σ)->2 

Q 
-2 is the power set of Q, the set of all subsets of Q δ(q,s) 

 
-The set of 

all states p such that there is atransition 

labeled s from q to p δ(q,s) is a function from Q x S to 2 

 

(but not to Q) 

Let M = (Q, Σ, δ,q0,F) be an NFA and let w be in Σ*. Then w is accepted by 
M iffδ({q0}, w) contains at least one state inF. 

Let M = (Q, Σ, δ,q0,F) be an NFA. Then the language accepted by M is 
theset: L(M) = {w | w is in Σ* and δ({q0},w) contains at least one state 
inF} Another equivalentdefinition: 
L(M) = {w | w is in Σ* and w is accepted by M} 
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Conversion from NFA to DFA 

Suppose there is an NFA N < Q, ∑, q0, δ, F > which recognizes a language L. Then the DFA D < 

Q‟, ∑, q0, δ‟, F‟ > can be constructed for language L as: 

Step 1: Initially Q‟ = ɸ. 

Step 2: Add q0 to Q‟. 

Step 3: For each state in Q‟, find the possible set of states for each input symbol using 
transition function of NFA. If this set of states is not in Q‟, add it to Q‟. 

Step 4: Final state of DFA will be all states with contain F (final states of NFA) 
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Example 

Consider the following NFA shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 
Following are the various parameters for NFA. 

Q = { q0, q1, q2 } 

∑ = ( a, b ) 

F = { q2 } 

δ (Transition Function of NFA) 

 

 

 

 

 

 

 

 

 

 

Step 1: Q‟ = ɸ 

Step 2: Q‟ = {q0} 

Step 3: For each state in Q‟, find the states for each input symbol. 

Currently, state in Q‟ is q0, find moves from q0 on input symbol a and b using transition 
function of NFA and update the transition table of DFA 

δ‟ (Transition Function of DFA) 

 

 

 

 

 

 
Now { q0, q1 } will be considered as a single state. As its entry is not in Q‟, add it 
to Q‟. So Q‟ = { q0, { q0, q1 } } 

Now, moves from state { q0, q1 } on different input symbols are not present in transition table of 

DFA, we will calculate it like: 
δ‟ ( { q0, q1 }, a  ) = δ ( q0, a ) ∪ δ ( q1, a ) = { q0, q1 } δ‟ ( { q0, q1 }, b ) = δ ( q0, b ) ∪ 

δ ( q1, b ) = { q0, q2 } Now we will update the transition table of DFA. 
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δ‟ (Transition Function of DFA) 

 

 

 

 

 

 

 

 

Now { q0, q2 } will be considered as a single state. As its entry is not in Q‟, add it 
to Q‟. So Q‟ = { q0, { q0, q1 }, { q0, q2 } } 

Now, moves from state {q0, q2} on different input symbols are not present in transition table of 

DFA, we will calculate it like: 
δ‟ ( { q0, q2 }, a ) = δ ( q0, a ) ∪ δ ( q2, a ) = { q0, q1 } δ‟ ( { q0, q2 }, b ) = δ ( q0, b ) ∪ δ ( q2, b ) = { q0 } Now we will update the transition table of DFA. 

 

 

δ‟ (Transition Function of DFA) 

 

 

 

 

 

 

 

As there is no new state generated, we are done with the conversion. Final state of DFA will 
be state which has q2 as its component i.e., { q0, q2 } 

Following are the various parameters for DFA. 

Q‟ = { q0, { q0, q1 }, { q0, q2 } } 
∑ = ( a, b ) 

F = { { q0, q2 } } and transition function δ‟ as shown above. The final DFA for above NFA 
has been shown in Figure 2. 

 

 

 

 

 

 

 
 

Note : Sometimes, it is not easy to convert regular expression to DFA. First you can 
convert regular expression to NFA and then NFA to DFA 
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Application of Finite state machine and regular expression in Lexical analysis: Lexical analysis 

is the process of reading the source text of a program and converting that source code into a 
sequence of tokens. The approach of design a finite state machine by using regular expression is so 

useful to generates token form a given source text program. Since the lexical structure of more or 
less every programming language can be specified by a regular language, a common way to 

implement a lexical analysis is to; 1. Specify regular expressions for all of the kinds of tokens in the 

language. The disjunction of all of the regular expressions thus describes any possible token in the 
language. 2. Convert the overall regular expression specifying all possible tokens into a 

deterministic finite automaton (DFA). 3. Translate the DFA into a program that simulates the DFA. 
This program is the lexical analyzer. To recognize identifiers, numerals, operators, etc., implement 

a DFA in code. State is an integer variable, δ is a switch statement Upon recognizing a lexeme 
returns its lexeme, lexical class and restart DFA with next character in source code. 

 
CONTEXT FREE-GRAMMAR 

 

Definition: Context-Free Grammar (CFG) has 4-tuple: G = (V, T, P,S) 

Where, 
 

V -A finite set of variables ornon-terminals 

T -A finite set of terminals (V and T do not intersect) 

P -A finite set of productions, each of the form A –>α, 

Where A is in V and α is in (V U T)* 

Note: that α may be ε. 

S -A starting non-terminal (S is inV) 

 
Example :CFG: 

 
G = ({S}, {0, 1}, P, S) P: 

S–>0S1 or just simply S –> 0S1 |ε 
S –>ε 

ExampleDerivations: 
 

S => 0S1 (1) 
S => ε (2) 

 => 01 (2) 

S => 0S1 (1) 
 => 00S11 (1) 
 => 000S111 (1) 
 => 000111 (2) 

 

k k 
• Note that G “generates” the language {0 1 |k>=0} 

 

 
 

Derivation (or Parse) Tree 

• Definition: Let G = (V, T, P, S) be a CFG. A tree is a derivation (or parse) treeif: 

– Every vertex has a label from V U T U{ε} 

– The label of the root isS 

– If a vertex with label A has children with labels X1, 

X2,…, Xn, from left to right, then 
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synchronizing set. The Usage of FOLLOW and FIRST symbols as synchronizing 
tokens works reasonably well when expressions are parsed. 

 
For the constructed table., fill with synch for rest of the input symbols of FOLLOW set and then 
fill the rest of the columns with error term. 

Terminals 
A –> X1, X2,…, Xn 

must be a production in P 
 

The first L stands for “Left-to-right scan of input”. The second L stands for “Left- 
most derivation”. The „1‟ 

 

stands for “1 token of look ahead”. 

No LL (1) grammar can be ambiguous or left recursive. 

LL (1) Grammar: 

• If a vertex has label ε, then that vertex is a leaf and the only child of its‟parent 

• More Generally, a derivation tree can be defined with any non-terminal as theroot. 

 

 

 

 

 

 

 

 

 

 

Notes: 

• Root can be anynon-terminal 

• Leaf nodes can be terminals ornon-terminals 

If there were no multiple entries in the Recursive decent parser table, the given grammar is 
LL (1). 

If the grammar G is ambiguous, left recursive then the recursive decent table will have 
atleast one multiply defined entry. 

The weakness of LL(1) (Top-down, predictive) parsing is that, must predict which 
production to use. 

Error Recovery in Predictive Parser: 

Error recovery is based on the idea of skipping symbols on the input until a token in a 

selected set of synchronizing tokens appear. Its effectiveness depends on the choice of 

• A derivation tree with root S shows the productions used to obtain a 
sentential form. 
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LL(k) 

LL(k) grammar performs a top-down, leftmost parse after reading the string from left-to- 
right Here, kk is the number of look-aheads allowed. 

With the knowledge of kk look-aheads, we 

calculate FIRSTkFIRSTk and FOLLOWkFOLLOWk where: 

If the parser looks up entry in the table as synch, then the non terminal on top of the stack is 
popped in an attempt to resume parsing. If the token on top of the stack does not match the 
input symbol, then pop the token from the stack. 

 

The moves of a parser and error recovery on the erroneous input) id*+id is as follows: 

• FIRSTkFIRSTk: kk terminals that can be at the beginning of a derived non-terminal 

• FOLLOWkFOLLOWk: kk terminals that can come after a derived non-terminal 

The basic idea is to create a lookup table using this information from which the parser 

can then simply go and check what derivation is to be made given a certain input token. 
 

Now, the following text from here explains strong LL(k)LL(k): 

In the general case, the LL(k)LL(k) grammars are quite difficult to parse directly. This is due to the 

fact that the left context of the parse must be remembered somehow. 

Each parsing decision is based both on what is to come as well as 
 

already been seen of the input. 

on what has 

 

The class of LL(1)LL(1) grammars are so easily parsed because it is strong. The strong 

LL(kLL(k) grammars are a subset of the LL(k)LL(k) grammars that can be parsed without 

knowledge of the left-context of the parse. That is, each parsing decision is based only on the 

next k tokens of the input for the current nonterminal that is being expanded. Formally, 

 

A grammar (G=N,T,P,S)(G=N,T,P,S) is strong if for any two distinct A-productions in the grammar: 

A→αA→α 

A→βA→β 
FIRSTk(αFOLLOWk(A))∩FIRSTk(βFOLLOWk(A))=∅FIRSTk(αFOLLOWk(A))∩FIRSTk(βFOL LOWk(A))=∅ 

That looks complicated so we‟ll see it another way. Let‟s take a textbook example to understand, 
instead, when is some grammar “weak” or when exactly would we need to know the left-context of 
the parse. 

 

S→aAaS→aAa 

S→bAbaS→bAba 

A→bA→b 

A→ϵA→ϵ 

Here, you‟ll notice that for an LL(2)LL(2) instance, baba could result from either of 

the SSproductions. So the parser needs some left-context to decide whether baba is produced 
by S→aAaS→aAa or S→bAbaS→bAba. 

Such a grammar is therefore “weak” as opposed to being a strong LL(k)LL(k) grammar. 
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Unit-II 
 

BOTTOM UPPARSING: 

Bottom-up parser builds a derivation by working from the input sentence back towards the 

start symbol S. Right most derivation in reverse order is done in bottom-up parsing. 

 

(The point of parsing is to construct a derivation. A derivation consists of a series of 

rewrite steps) 

S r0 r1 r2 - - - rn- 

 

 
1 rn sentence Bottom-up 

 

Assuming the production A→ , to reduce ri ri-1 match some RHS against ri then replace with 

its corresponding LHS, A.In terms of the parse tree, this is working from leaves to root. 

Example – 1: 

S→if E then S else S/while E do S/ 

print E→ true/ False/id 

Input: if id then while true do print else print. 

Parse tree: 

Basicidea: Given input string a, “reduce” it to the goal (start) symbol, by looking for substring 

that match productionRHS. 

S 
 
 
 
 
 

E then  

S Clse 

If   S 

 
While E do S 

| 

true 
 

 

 

if E then S 
elseS lm 

if id then S 

elseS lm 

if id then while E do S 

elseS lm 

if id then while true do S 

elseS lm 

if id then while true do print elseS 

lm 
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if id then while true do print 
elseprint lm 

if E then while true do print elseprint 

rm 

if E then while E do print elseprint 

rm 

if E then while E do S elseprint 

rm 

if E then S 
elseprint rm 

if E then S 
elseS rm 

S 

rm 

 

HANDLE PRUNING: 

Keep removing handles, replacing them with corresponding LHS of production, until we reach S. 

Example: 

E→E+E/E*E/(E)/id 
 

Right-sentential form Handle Reducing production 

a+b*c A E→id 

E+b*c B E→id 

 

E+E*C C E→id 

E+E*E E*E E→E*E 

E+E E+E E→E+E 

E   

 

The grammar is ambiguous, so there are actually two handles at next-to-last step. We can use parser- 
generators that compute the handles for us 

 

 

 

LR PARSINGINTRODUCTION: 

The "L" is for left-to-right scanning of the input and the "R" is for constructing 

a rightmost derivation in reverse. 
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WHY LR-PARSING: 

1. LRparsers can be constructed to recognize virtually all programming- 

language constructs for which context-free grammarscan be written. 

2. TheLRparsing method is the most general non-backtracking shift- reduce parsing 

method known, yetitcanbeimplementedas efficiently as other shift-reducemethods. 

3. The class of grammars that can be parsed using LR methods is a proper subset of 

the class of grammars that can be parsed with predictiveparsers. 

4,AnLR parser can detect a syntactic error as soon as it is possible to do so on a left- 

to-right scan of theinput. 

The disadvantage is that it takes too much work to constuct an LR parser by hand for a 

typical programming-language grammar. But there are lots of LR parser generators 

available to make this taskeasy. 

 
LR-PARSERS: 

LR(k) parsers are most general non-backtracking shift-reduce parsers. Two cases of 

interest are k=0 and k=1. LR(1) is of practical relevance. 

„L‟stands for “Left-to-right” scan of input. 

„R‟ stands for “Rightmost derivation (in reverse)”. 

 
K‟standsfornumber ofinput symbolsoflook-a-head thatareusedin 

makingparsingdecisions.When (K) is omitted, „K‟is assumed to be 1. 

LR(1) parsers are table-driven, shift-reduce parsers that use a limited right context (1 

token) for handle recognition. 
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LR(1) parsers recognize languages that have an LR(1) grammar. 

A grammar is LR(1) if, given a right-most derivation 

S r0 r1 r2- - - rn-1 rn sentence. 

We can isolate the handle of each right-sentential form ri and determine the production by which 

to reduce, by scanning ri from left-to-right, going atmost 1 symbol beyond the right end of the 

handle of ri. 

Parser accepts input when stack contains only the start symbol and no remaining input symbol 

areleft. 

LR(0)item: (no lookahead) 

Grammar rule combined with a dot that indicates a position in its RHS. 

Ex– 1: S
I
→ .S$ 

S→. 

x S→.(L) 

Ex-2: A→XYZ generates 4LR(0) items 

A→.XYZ 

A→X. 

YZ A→XY. 

Z A→XYZ. 

A→XY.Z indicates that the parser has seen a string derived from XY and is looking 

for one derivable from Z. 

→ LR(0) items play a key role in the SLR(1) table constructionalgorithm. 

→ LR(1) items play a key role in the LR(1) and LALR(1) table 

constructionalgorithms. LR parsers have more information available 

than LL parsers when choosing aproduction: 

* LR knowseverything derived fromRHS plus„K‟lookaheadsymbols. 

* LL just knows„K‟lookaheadsymbols into what‟sderived fromRHS. 

* Deterministic context free languages: 

* 

* 

* LR (1) languages 

* 

* 

 
 

LALR PARSING: 

Example: 
 

Construct C={I0,I1,… ......... ,In} The collection of sets of LR(1)items 

For each core present among the set of LR (1) items, find all sets having that core, and 

replace there sets by their Union# (clus them into a singleterm) 
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I0 →same asprevious 

I1 → “ 

I2 → “ 
 

C →cC,c/d/$ 

C→cC,c/d/$ 

C→d,c/d/$ I5→some 

as previous 

I47→C→d,c/d/$ 

I89→C→cC, c/d/$ 

 

LALR Parsing table construction: 

 

State 
Action Goto 

c d $ S C 

Io S36 S47  1 2 

1   Accept   

2 S36 S47   5 

36 S36 S47   89 

47 r3 r3    

5   r1   

89 r2 r2 r2   

 

Ambiguous grammar: 

 
A CFG is said to ambiguous if there exists more than one derivation tree for the given input string i.e., 

more than one LeftMost Derivation Tree (LMDT) or RightMost Derivation Tree (RMDT). 

 
Definition: G = (V,T,P,S) is a CFG is said to be ambiguous if and only if there exist a string in T* 
that has more than on parse tree. 

where V is a finite set of variables. 

T is a finite set of terminals. 
P is a finite set of productions of the form -> α, where A is a  variable and α ∈ (V ∪ T)* S is a designated variable called the start symbol. 

 
 

 
 

 
 

 

 
 

 
 

 

For Example: 

 

1. Let us consider this grammar : E ->E+E|id 

We can create 2 parse tree from this grammar to obtain a string id+id+id : 

The following are the 2 parse trees generated by left most derivation: 
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Both the above parse trees are derived from same grammar rules but both parse trees are different. 

Hence the grammar is ambiguous. 

YACC PROGRAMMING 

A parser generator is a program that takes as input a specification of a syntax, and produces 
as output a procedure for recognizing that language. Historically, they are also called 
compiler-compilers. 

YACC (yet another compiler-compiler) is an LALR(1) (LookAhead, Left-to-right, Rightmost 
derivation producer with 1 lookahead token) parser generator. YACC was originally 
designed for being complemented by Lex. 

 

Input File: 

YACC input file is divided in three parts. 

/* definitions */ 

.... 

 

 
%% 

/* rules */ 

.... 

%% 

 

 
/* auxiliary routines */ 

.... 

Input File: Definition Part: 

• The definition part includes information about the tokens used in the syntax definition: 

• %token NUMBER 
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%token ID 

• Yacc automatically assigns numbers for tokens, but it can be overridden 
by %token NUMBER 621 

• Yacc also recognizes single characters as tokens. Therefore, assigned token 
numbers should no overlap ASCII codes. 

• The definition part can include C code external to the definition of the parser 
and variable declarations, within %{and %} in the first column. 

• It can also include the specification of the starting symbol in the 
grammar: %start nonterminal 

• The rules part contains grammar definition in a modified BNF form. 

• Actions is C code in { } and can be embedded inside (Translation schemes). 

 

• The auxiliary routines part is only C code. 

• It includes function definitions for every function needed in rules part. 

• It can also contain the main() function definition if the parser is going to be run as a program. 

• The main() function must call the function yyparse(). 

 
• If yylex() is not defined in the auxiliary routines sections, then it should be 

included: #include "lex.yy.c" 

• YACC input file generally finishes with: 

.y 

Output Files: 

• The output of YACC is a file named y.tab.c 

• If it contains the main() definition, it must be compiled to be executable. 

• Otherwise, the code can be an external function definition for the function int yyparse() 

• If called with the –d option in the command line, Yacc produces as output a header 

file y.tab.h with all its specific definition (particularly important are token definitions to 
be included, for example, in a Lex input file). 

• If called with the –v option, Yacc produces as output a file y.output containing a textual 
description of the LALR(1) parsing table used by the parser. This is useful for tracking 
down how the parser solves conflicts. 

 
Semantics 

Syntax Directed Translation: 

• A formalist called as syntax directed definition is used fort specifying translations for 

programming languageconstructs. 

• A syntax directed definition is a generalization of a context free grammar in which each 

grammar symbol has associated set of attributes and each and each productions is 

associated with a set of semanticrules 

Definition of (syntax Directed definition ) SDD : 

 
• SDD is a generalization of CFG in which each grammar productions X->α is associated with it a set of 

semantic rules of the form 
 

a: = f(b1,b2…..bk) 
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Where a is an attributes obtained from the function f. 

 

A syntax-directed definition is a generalization of a context-free grammar inwhich: 
 

• Each grammar symbol is associated with a set ofattributes. 

 
•  Thissetofattributesforagrammarsymbolispartitionedintotwosubsetscalledsynthesized 

and inherited attributes of that grammar symbol. 

• Each production rule is associated with a set of semanticrules. 

• Semantic rules set up dependencies between attributes which can be represented 
by a dependencygraph. 

• This dependency graph determines the evaluation order of these semanticrules. 

• Evaluation of a semantic rule defines the value of an attribute. But a semantic rule may 
also have some side effects such as printing avalue. 

The two attributes for non terminalare : 

The two attributes for non terminalare : 

Synthesized attribute (S-attribute) :(↑) 

An attribute is said to be synthesized attribute if its value at a parse tree node is 

determined from attribute values at the children of the node 
 

Inherited attribute:(↑,→) 

 
An inherited attribute is one whose value at parse tree node is determined in terms of attributes at 

the parent and | or siblings of thatnode. 

• The attribute can be string, a number, a type, a, memory location or anythingelse. 

• The parse tree showing the value of attributes at each node is called an 
annotated parse tree. 

 

The process of computing the attribute values at the node is called annotating or decorating 

the parse tree.Terminals can have synthesized attributes, but not inherited attributes. 

Annotated Parse Tree 

• A parse tree showing the values of attributes at each node is called an Annotated parsetree. 

 

• The process of computing the attributes values at the nodes is called annotating(or 

decorating) of the parse tree. 

• Of course, the order of these computations depends on the dependency graph 
induced by the semanticrules. 

Ex1:1) Synthesized Attributes : Ex: Consider the CFG : 

S→ EN 

E→E+T 

E→E-T 

 

E→ T 

T→ T*F 

T→T/F 

T→F 

F→(E) 

F→digit N→; 
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Solution: The syntax directed definition can be written for the above grammar by using 
semantic actions for each production 

Productionrule Semanticactions 
 

S→EN 

E→E1+T 

E→E1-T 

E→T 

T→T*F 

T→T|F 

F→ (E) 

T→F 

F→digit 
N→; 

S.val=E.val 

E.val =E1.val +T.val 

E.val = E1.val –T.val 

E.val=T.val 

T.val = T.val *F.val 

T.val =T.val | F.val 

F.val=E.val 

T.val=F.val 
F.val =digit.lexval 

can be ignored by lexical Analyzer as;I 

is terminating symbol 

For the Non-terminals E,T and F the values can be obtained using the attribute “Val”. 

The taken digit has synthesized attribute “lexval”. 

In S→EN, symbol S is the start symbol. This rule is to print the final answer of expressed. 

Following steps are followed to Compute S attributed definition 

Write the SDD using the appropriate semantic actions for corresponding production rule 

of the givenGrammar. 
 

The annotated parse tree is generated and attribute values are computed. The Computation 

is done in bottom upmanner. 

The value obtained at the node is supposed to be final output. 

 
L-attributed SDT 

This form of SDT uses both synthesized and inherited attributes with restriction of not taking values 

from right siblings. 

In L-attributed SDTs, a non-terminal can get values from its parent, child, and sibling nodes. As 

in the following production 

 

S→ABC 

 
S can take values from A, B, and C (synthesized). A can take values from S only. B can take values 

from S and A. C can get values from S, A, and B. No non-terminal can get values from the sibling 

to its right. 

Attributes in L-attributed SDTs are evaluated by depth-first and left-to-right parsing manner. 
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We may conclude that if a definition is S-attributed, then it is also L-attributed as L-attributed 

definition encloses S-attributed definitions 

Intermediate Code 

An intermediate code form of source program is an internal form of a program created by the 

compiler while translating the program created by the compiler while translating the program from 

a high –level language to assembly code(or)object code(machine code).an intermediate source form 

represents a more attractive form of target code than does assembly. An optimizing Compiler 

performs optimizations on the intermediate source form and produces an objectmodule. 

Analysis + syntheses=translation 

 

 

 
   Createsan  generate targe  

code Intermediatecode 

parser 
 

Static intermediate intermediate code 

 
 

 

 
Checker code generator code generator 

 

In the analysis –synthesis model of a compiler, the front-end translates a source program into an 
intermediate representation from which the back-end generates target code, in many compilers the 
source code is translated into a language which is intermediate in complexity between a HLL and 
machine code .the usual intermediate code introduces symbols to stand for various temporary 
quantities. 

 
We assume that the source program has already been parsed and statically checked..the 

various intermediate code forms are: 

 

a) Polishnotation 

b) Abstract syntax trees(or)syntaxtrees 

c) Quadruples 

d) Triples three address code 

e) Indirecttriples 

f) Abstract 

machinecode(or)pseudocopde postfix notation: 
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The ordinary (infix) way of writing the sum of a and b is with the operator in the middle: a+b. the 

postfix (or postfix polish)notation for the same expression places the operator at the right end, 

asab+. 

 

In general, if e1 and e2 are any postfix expressions, and Ø to the values denoted by e1 and e2 is 

indicated in postfix notation nby e1e2Ø.no parentheses are needed in postfix notation because the 

position and priority (number of arguments) of the operators permits only one way to decode a 

postfixexpression. 

 

Syntax Directed Translation: 

• A formalist called as syntax directed definition is used fort specifying translations for 

programming languageconstructs. 

• A syntax directed definition is a generalization of a context free grammar in which each 

grammar symbol has associated set of attributes and each and each productions is 

associated with a set of semanticrules 

Definition of (syntax Directed definition ) SDD : 

 

SDD is a generalization of CFG in which each grammar productions X->α is associated with it a 

set of semantic rules of the form 

a: = f(b1,b2…..bk) 

Where a is an attributes obtained from the function f. 
 

• A syntax-directed definition is a generalization of a context-free grammar inwhich: 

• Each grammar symbol is associated with a set ofattributes. 

 
Thissetofattributesforagrammarsymbolispartitionedintotwosubsetscalledsynthesized 

and inherited attributes of that grammar symbol. 

 

• Each production rule is associated with a set of semanticrules. 

 
• Semantic rules set up dependencies between attributes which can be represented 

by a dependencygraph. 
 

Annotated Parse Tree 
 

• A parse tree showing the values of attributes at each node is called an Annotated parsetree. 
 

• The process of computing the attributes values at the nodes is called annotating(or 

decorating) of the parse tree.Of course, the order of these computations depends on 

the dependency graph induced by the 
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Syntax tree: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Annotated parse tree : 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ASSIGNMENT STATEMENTS 

 

Suppose that the context in which an assignment appears is given by the following grammar. P 

M D 

M ɛ 
D D ; D | id : T | proc id ; N D ; 
S N ɛ 

Nonterminal P becomes the new start symbol when these productions are added to those in 
the translation scheme shown below. 

 

Translation scheme to produce three-address code for assignments 
→ 

id := E { p : = lookup ( id.name); 

ifp≠nil then 

emit( p ‘ : =’ E.place) 

elseerror } 

E 
→ 

E1 + E2 { E.place : = newtemp; 
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emit(E.place ‘: =’ E1.place ‘ + ‘ E2.place ) } 

E 
→ 

E1 * E2 { E.place : = newtemp; 

emit(E.place ‘: =’ E1.place ‘ * ‘ E2.place ) } 

→ 
- E1 { E.place : = newtemp; 

emit ( E.place ‘: =’ ‘uminus’ E1.place ) } 

E →( E1 ) { E.place : = E1.place } 

E 
→ 

id { p : = lookup ( id.name); 

ifp≠nil then 

E.place : = p 

elseerror } 

Flow-of-Control Statements 

We now consider the translation of boolean expressions into three -address code in the context of 
if-then, if-then-else, and while-do statements such as those generated by the following grammar: 

S if E then S1 

if E then S1 else 

| S2 

| while E do S1 
In each of these productions, E is the Boolean expression to be translated. In the translation, we 
assume that a three-address statement can be symbolically labeled, and that the function 
newlabelreturns a new symbolic label each time it is called. 

• E.true is the label to which control flows if E is true, and E.false is the label to which 
control flows if E is false. 

• The semantic rules for translating a flow-of-control statement S allow control to flow from 
the translation S.code to the three-address instruction immediately following S.code. 

• S.nextis a label that is attached to the first three-address instruction to be executed after the 
code for Code for if-then , if-then-else, and while-do statements 

 

 

 

 

 

 

 

 

 

 

 

 
E.false: . . . 

 
E.false: 

 
 
 

S2.code 

S.next: . . . 

 
(a) if-then (b) if-then-else 
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S.begin: 
 

E.code to E.true 

  
 

to E.false 

E.true: S1.code  

 gotoS.begin  

E.false: . . .  

 (c) while-do  

PRODUCTION SEMANTIC RULES 
→   

Sif E then S1 E.true : = newlabel; 

E.false : = S.next; 

S1.next : = S.next; 

→ S.code : = E.code || gen(E.true „:‟) || S1.code 

Sif E then S1else S2 E.true : = newlabel; 

E.false : = newlabel; 

S1.next : = S.next; 

S2.next : = S.next; 

S.code : = E.code || gen(E.true „:‟) || S1.code || 

  gen(„goto‟ S.next) || 

→ 
 

gen( E.false „:‟) || S2.code 

SwhileE do S1 S.begin : = newlabel; 
 E.true : = newlabel; 

 E.false : = S.next; 

 S1.next : = S.begin; 

 S.code : = gen(S.begin „:‟)|| E.code || 

 gen(E.true „:‟) || S1.code || 

 gen(„goto‟ S.begin) 
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Unit-III 
 

According to Chomsky hierarchy, grammars are divided of 4 types: 

 

Type 0 known as unrestricted grammar. 

Type 1 known as context sensitive grammar. 

Type 2 known as context free grammar. 

Type 3 Regular Grammar. 

 

Type 0: Unrestricted Grammar: 

In Type 0 

Type-0 grammars include all formal grammars. Type 0 grammar language are recognized by 

turing machine. These languages are also known as the Recursively Enumerable languages. 

 

Grammar Production in the form of 

 
alpha \to \beta where alpha is ( V + T)* V ( V + 
T)* V : Variables 

T : Terminals. 

beta is ( V + T )*. 

In type 0 there must be at least one variable on Left side of production. 

 

For example, 

Sab –>ba A–

>S. 

Here, Variables are S, A and Terminals a, b. 

 

Type 1: Context Sensitive Grammar) 

Type-1 grammars generate the context-sensitive languages. The language generated by the grammar 

are recognized by the Linear Bound Automata 
In Type 1 

I. First of all Type 1 grammar should be Type 0. 

II. Grammar Production in the form of 

 

alpha \to \beta 

alpha| <= |\beta| 

i.e count of symbol in \alpha is less than or equal to \beta 

 

For Example, 

S–>AB 

AB –>abc 

B –> b 

 

Type 2: Context Free Grammar: 

Type-2 grammars generate the context-free languages. The language generated by the grammar is 

recognized by a Pushdown automata. Type-2 grammars generate the context-free languages. 

 

In Type 2, 

1. First of all it should be Type 1. 

2. Left hand side of production can have only one variable. 

alpha= 1. 
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Their is no restriction on \beta. 

 

For example, 

S–>AB 

A –> a B 

–> b 

 

Type 3: Regular Grammar: 

Type-3 grammars generate regular languages. These languages are exactly all languages that can 
be accepted by a finite state automaton. 

 

Type 3 is most restricted form of grammar. 

Type 3 should be in the given form only : 

 

V–>VT*/ 

T*. (or) 

V –> T*V /T* 

 

for example : 

S –> ab. 

TypeChecking: 
• A compiler has to do semantic checks in addition to syntactic checks. 

• Semantic Checks 

• Static –done duringcompilation 

• Dynamic –done duringrun-time 

• Type checking is one of these static checkingoperations. 

• we may not do all type checking at compile-time. 

• Some systems also use dynamic type checking too. 

• A type system is a collection of rules for assigning type expressions to the parts of a program. 

• A type checker implements a type system. 

• A sound type system eliminates run-time type checking for type errors. 

• A programming language is strongly-typed, if every program its compiler accepts will 

execute without type errors. 
 

• In practice, some of type checking operations is done at run-time (so, most of 

the programming languages are not strongly yped). 
 

• –Ex: int x[100]; … x[i] most of the compilers cannot guarantee that i will be between 
0and 99 

 

Type Expression: 

• The type of a language construct is denoted by a typeexpression. 
 

•A type expression can be: 

 

–A basic type 

 
•a primitive data type such as integer, real, char, Boolean, … 

 

• type-error to signal a typeerror 
 

• void: notype 
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A type name 

 
• a name can be used to denote a type expression. 

 
• A type constructor applies to other type expressions. 

 

• arrays: If T is a type expression, then array (I,T)is a type expression where I denotes index 

range. Ex: array(0..99,int) 

• products: If T1and T2 are type expressions, then their Cartesian product T1 x T2 is a type 

expression. Ex: int xint 

• pointers: If T is a type expression, then pointer (T) is a type expression. Ex: pointer(int) 
 

• functions: We may treat functions in a programming language as mapping from a domain 

type D to a range type R. So, the type of a function can be denoted by the type expression 

D→R where D are R type expressions. Ex: int→int represents the type of a 

function which takes an int value as parameter, and its return type is alsoint. 
 

 
Type Checking of Statements:  

S->d=E { if (id.type=E.type 

 thenS.type=void else S.type=type- 

 error 

 
S ->if Ethen S1 

 
{ if (E.type=boolean thenS.type=S1.type 

 else S.type=type-error} 

S->while EdoS1 { if (E.type=boolean thenS.type=S1.type 

 else S.type=type-error} 
 

Type Checking of Functions: 

E->E1(E2)  { if (E2.type=s and E1.type=s t)thenE.type=t 

  else E.type=type-error} 

Ex: intf(double x, char y) { ... } 

f: double x char->int 

argumenttypes return type 

 

Structural Equivalence of Type Expressions: 
 

•How do we know that two type expressions are equal? 

•As long as type expressions are built from basic types (no type names), we may use structural 

equivalence between two type expressions 

Structural Equivalence Algorithm (sequin): 

if (s and t are same basic types) then return true 

else if (s=array(s1,s2) and t=array(t1,t2)) 
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then return (sequiv(s1,t1) 

andsequiv(s2,t2)) 

else if(s= s1 x s2and t = t1 x t2) 

then return (sequiv(s1,t1) 

and sequiv(s2,t2)) 
 

else if (s=pointer(s1) and t=pointer(t1)) then return (sequiv(s1,t1)) 
 

else if (s = s1 s2and t = t1 
 

else return false 

t2) then return (sequiv(s1,t1) and sequiv(s2,t2)) 

 

Names for Type Expressions: 

 
In some programming languages, we give a name to a type expression, and we use that name 

as a type expressionafterwards. 

type link= ↑cell; ? p,q,r,s have same 
 

types ? varp,q :link; 

varr,s : ↑cell 

•How do we treat type names? 

Get equivalent type expression for a type name (then use structural 
equivalence), or Treat a type name as a basic type 

 
 

Overloading of Functions and Operators 

AN OVERLOADED OPERATOR may have different meanings depending upon its 
context. Normally overloading is resolved by the types of the arguments, 
but sometimes this is not possible and an expression can have a set of possible types. 

Example 2 In the previous section we were resolving overloading of binary arithmetic operators by 
looking at the the types of the arguments. Indeed we had two possibles types, say $ \mathbb {Z}$ 
and $ \mathbb {R}$, with a natural coercion due to the inclusion 

$\displaystyle \mbox{${\mathbb Z}$}$ $\displaystyle \subseteq$ $\displaystyle \mbox{${\mathbb 

R}$}$ (2) 

But what could we do if we had the three types $ \mathbb {Z}$, $ \mbox{${\mathbb Z}$}$/p$ 

\mbox{${\mathbb Z}$}$ and $ \mbox{${\mathbb Z}$}$/m$ \mbox{${\mathbb Z}$}$ for two 
different integers m and p? 

There is no natural coercion between $ \mbox{${\mathbb Z}$}$/p$ \mbox{${\mathbb Z}$}$ and $ 

\mbox{${\mathbb Z}$}$/m$ \mbox{${\mathbb Z}$}$. 

So the type of an expression like 1 + 2 and consequently the signature of + may also depend on 
what is done with 1 + 2. 

SET OF POSSIBLE TYPES FOR A SUBEXPRESSION. The first step in resolving the overloading 
of operators and functions occuring in an expression E' is to determine the possible types for E'. 

For simplicity, we restrict here to unary functions. 

We assign to each subexpression E of E' a synthesized attribute E.types which is the set 
of possible types for E. 
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These attributes can be computed by the following translation scheme. 
E' $ \longmapsto$ E { E'.types := E.types } 
E $ \longmapsto$ $ \bf id$ { E.types := lookup(id.entry) } 
E $ \longmapsto$ E1[E2] { E.types := {t | ($ \exists$ s $ 
\in$ E2.types) | (s $ \rightarrow$ t) $ \in$ E1.types} }  

 

NARROWING THE SET OF POSSIBLE TYPES. The second step in resolving the overloading of 
operators and functions in the expression E' consists of 

determining if a unique type can be assigned to each subexpression E of 
E' and generating the code for evaluating each subexpression E of E'. 

This s done by 

assigning an inherited attribute E.unique to each subexpression E of E' 
such that either E can be assigned a unique type and E.unique is this type, 
or E cannot be assigned a unique type and E.unique is $ \bf type\_error$. 

assigning a synthesized attribute E.code which is the target code for evaluating E and 
executing the following translation scheme (where the attributes E.types have already 
been computed). 
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Unit-IV 
 

 

STORAGE ORGAN ISAT ION 
 

• The executin•• tar3et program runs in its own logical address space in which each 
program value has a location. 

• The management and organization of this logical address space is shared between the 

complies, operating system and target machine. The operating system maps the logical 

address into physical addresses, which are usually spread throughout memory. 
 

 

 

CoJe 

Static Data 

Stack 

 

free memory 

Heap 

 

Run-time storage comes in blocks, where a byte is the smallest unit of addressable 
bytes and given the address of‘ first byte. 

• The storage layout for data objects is strongly influenced by the addressing constraints of 
the target machine. 

• A character array of length 10 needs only enough bytes to hold 10 characters, a compiler 

may allocate 12 bytes to s et alignment, leaving 2 bytes unused. 

• This unused space due to alignment considerations 1s referred to as padding. 

• The size of sortie program objects may be known at run time and may be placed in an 
area cal led static 

• The dynamic areas used to maximize the utilization of space at run time are stack and 

heap. 

 
Activation records: 

• Procedure calls and returns are usually man‹s ed by a run time stack called the cnnli ol 
.s‘tavk. 

• Each live activation has an activation record on the control stack, with the root of the 

activation tree at the bottom, the latter activation has its recoi’d at the top of‘the stuck. 

• The contents of the activation record vary with the lans uage being implemented. The 

dias ram below shows the contents of activation record. 
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• Local daia belonging to the procedure whose activation record this is. 

• A saved machine status, with information about the state of the machine just before the 

call to procedures. 

• An access link may be needed to locate data needed by the called procedure but found 
elsewhere. 

• A control link pointing to the activation record of the caller. 
Space tor the return value of’ the called tiinctions, if any. A gain, not all called procedures 

etJiciency. 

• The actual parameters used by the calling procedure. These are not placed in activation 

record but rather in res isters, when possible, for greater et’liciency. 

 
STORAGE ALLOCATION STRATEGIES 

3 Heap allocation — allocates and deallocates storage as needed at run time from a data area 

known as heap 

 
 

STATIC ALLOCATION 
In static allocation, names are bound to storage as the program is compiled, so there is no 

need for a run-time support package. 

• Since the bindings do not change at run-time, everytime a procedure is activated, its 

names are bound to the same storage locations. 

• Therefore values of local names are i elaineJ across activations of a procedure That is, 

when control returns to a procedure the values of the locals are the same as they were 

when control left the last time. 

• Front the type of a name, the compiler decides the amount of storage for the naiTle and 

decides where the activation records go. Ai compile time, we can fill in lhe addresses at 
which the target code can i’iiid the data it operates on. 
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CODE OPTIMIZATION 

The code produced by the straight forward compiling algorithms can often be made to run faster 
or take less space, or both. This improvement is achieved by program transformations that are 
traditionally called optimizations. Compilers that apply code- improving transformations are 
called optimizingcompilers. 

 
Optimizations are classified into two categories. 
Theyare Machine independentoptimizations: 

Machine dependantoptimizations: 

 

Machine independentoptimizations: 
Machine independent optimizations are program transformations that improve the 
target code without taking into consideration any properties of the targetmachine. 

 
Machine dependantoptimizations: 
Machine dependant optimizations are based on register allocation and utilization of 
special machine- instruction sequences. 

 
The criteria for code improvementtransformations: 

 
• Simply stated, the best program transformations are those that yield the most benefit for 

the leasteffort. 
 

• The transformation must preserve the meaning of programs. That is, the optimization must 
not change the output produced by a program for a given input, or cause an error such as 
division by zero, that was not present in the original source program. At all times we take 
the “safe” approach of missing an opportunity to apply a transformation rather than risk 
changing what the programdoes. 

 
• A transformation must, on the average, speed up programs by a measurable amount. We 

are also interested in reducing the size of the compiled code although the size of the code 
has less importance than it once had. Not every transformation succeeds in improving 
every program, occasionally an “optimization” may slow down a programslightly. 

 

• The transformation must be worth the effort. It does not make sense for a compilerwriter 
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• to expend the intellectual effort to implement a code improving transformation and to 
have the compiler expend the additional time compiling source programs if this effort is 
not repaid when the target programs are executed. “Peephole” transformations of this kind 
are simple enough and beneficial enough to be included in anycompiler. 

• Flow analysis is a fundamental prerequisite for many important types of code 
improvement. 

• Generally control flow analysis precedes data flowanalysis. 

• Control flow analysis (CFA) represents flow of control usually in form of graphs, CFA 
constructs sucha 

o control flow graph 

o Callgraph 
 

• Data flow analysis (DFA) is the process of ascerting and collecting information prior 
to program execution about the possible modification, preservation, and use of certain 
entities (such as values or attributes of variables) in a computerprogram 

 
Function-Preserving Transformations 

• There are a number of ways in which a compiler can improve a program 
without changing the function itcomputes. 

• Thetransformations 

o Common sub expressionelimination, 
o Copypropagation, 

o Dead-code elimination,and 
o Constant folding, are common examples of such function-preserving 

transformations. The other transformations come up primarily when global 
optimizations areperformed. 

• Frequently, a program will include several calculations of the same value, such as an 
offset in an array. Some of the duplicate calculations cannot be avoided by the 
programmer because they lie below the level of detail accessible within the source 
language. 

Common Sub expressionselimination: 
• An occurrence of an expression E is called a common sub-expression if E was 

previously computed, and the values of variables in E have not changed since the 
previous computation. We can avoid recomputing the expression if we can 
usethe previously computedvalue. 

 
Forexample 

t1: =4*i 

t2: =a [t1] 

t3: =4*j 

t4:=4*i 

t5:=n 

t 6: =b [t 4] +t 5 

 
The above code can be optimized using the common sub-expression eliminationas t1:=4*i 
t2:=a 

[t1]t3:=4*j 

t5:=n 

t6: =b [t1] +t5 

The common sub expression t 4: =4*i is eliminated as its computation is already in t1. 
And value of i is not been changed from definition to use. 
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CopyPropagation: 
Assignments of the form f : = g called copy statements, or copies for short. The idea behind the copy- 
propagation transformation is to use g for f, whenever possible after the copy statement f: = g. Copy 
propagation means use of one variable instead of another. This maynot appear to be an improvement, but 
as we shall see it gives us an opportunity to eliminatex. 

 
For example: x=Pi; 

 

…… A=x*r*r; 

 

The optimization using copy propagation can be done as follows: A=Pi*r*r; Here the 

variable x is eliminated 

Dead-CodeEliminations: 
A variable is live at a point in a program if its value can be used subsequently; otherwise, it is 
dead at that point. A related idea is dead or useless code, statements that compute values that 
never get used. While the programmer is unlikely to introduce any dead code intentionally, it 
may appear as the result of previous transformations. An optimization can be done by 
eliminating deadcode. 

 
Example: i=0; 

if(i=1) 

{ 

a=b+5; 

} 

Here,„if‟statement is dead codebecausethis condition will never get satisfied. 

 

Constant folding: 

• We can eliminate both the test and printing from the object code. More generally, 
deducing at compile time that the value of an expression is a constant and using the 
constant instead is known as constantfolding. 

 

• One advantage of copy propagation is that it often turns the copy statement into deadcode. 

 

Forexample, 

a=3.14157/2 can be replaced by 

a=1.570 there by eliminating a division operation. 

 

Loop Optimizations 

• We now give a brief introduction to a very important place for optimizations, namely 
loops, especially the inner loops where programs tend to spend the bulk of their time. The 
running time of a program may be improved if we decrease the number of instructions in 
an inner loop, even if we increase the amount of code outside thatloop. 

• Three techniques are important for loopoptimization: 
codemotion, which moves code outside aloop; 

Induction -variable elimination, which we apply to replace variables from innerloop. 
Reduction in strength, which replaces and expensive operation by a cheaper one, such 
as a multiplication by anaddition 

CodeMotion: 

An important modification that decreases the amount of code in a loop is code motion. This 
transformation takes an expression that yields the same result independent of the number of times 
a loop is executed ( a loop-invariant computation) and places the expression before the loop. Note 
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that the notion “before the loop” assumes the existence of an entry for the loop. For 
example, evaluation of limit-2 is a loop-invariant computation in the followingwhile- 
statement: while (i<= limit-2) /* statement does not change Limit*/ Code motion 
will result in the equivalent of 

t= limit-2; 

while (i<=t) /* statement does not change limit or t */ 

 
Induction Variables 

• Loops are usually processed inside out. For example consider the loop aroundB3. 

• Note that the values of j and t4 remain in lock-step; every time the value of j decreases by 
1, that of t4 decreases by 4 because 4*j is assigned to t4. Such identifiers are called 
inductionvariables. 

 

• When there are two or more induction variables in a loop, it may be possible to get rid of 
all but one, by the process of induction-variable elimination. For the inner loop around 
B3 in Fig. we cannot get rid of either j or t4 completely; t4 is used in B3 and j inB4. 

• However, we can illustrate reduction in strength and illustrate a part of the process of 
induction-variable elimination. Eventually j will be eliminated when the outer loop of B2 
- B5 is considered. 

 
LOOPS IN FLOWGRAPH 

• A graph representation of three-address statements, called a flow graph, is useful for 
understanding code-generation algorithms, even if the graph is not explicitly constructed 
by a code-generation algorithm. Nodes in the flow graph represent computations, and the 
edges represent the flow of control. 

 

Dominators: 

In a flow graph, a node d dominates node n, if every path from initial node of the flow graph to n 
goes through d. This will be denoted by d dom n. Every initial node dominates all the remaining 
nodes in the flow graph and the entry of a loop dominates all nodes in the loop. 
Similarlyeverynode dominates itself. 

 
Example: 

• In the flow graph below, 
• Initial node,node1 dominates every node. *node 2 dominatesitself 

• node 3 dominates all but 1 and 2. *node 4 dominates all but 1,2 and 3. 

 
• node 5 and 6 dominates only themselves,since flow of control can skip around either by goin 

through theother. 

• node 7 dominates 7,8 ,9 and 10. *node 8 dominates 8,9 and 10. 

 

• node 9 and 10 dominates only themselves 

 

 

 

 

 

 

 

 

 

 

 
Automata & Compiler Design Page 41 

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/


 
 
 
 
 
 
 
 
 
 
 
 
 

• The way of presenting dominator information is in a tree, called the dominator tree 
in which the initial node is theroot. 

 

• The parent of each other node is its immediatedominator. 
• Each node d dominates only its descendents in thetree. 
• The existence of dominator tree follows from a property of dominators; each node has a 

unique immediate dominator in that is the last dominator of n on any path from the initial 
node ton. 

• In terms of the dom relation, the immediate dominator m has the property is d=!n and 
d dom n, then d domm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
D(1)={1} 

 

D(2)={1,2} 

 
D(3)={1,3} 

 

D(4)={1,3,4} 

 

D(5)={1,3,4,5} 

(6)={1,3,4,6} 

 
D(7)={1,3,4,7} 

 

D(8)={1,3,4,7,8} 
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D(9)={1,3,4,7,8,9} 

 

D(10)={1,3,4,7,8,10} 

NaturalLoop 

 
• One application of dominator information is in determining the loops of a 

flow graph suitable forimprovement. 
 

• The properties of loopsare 
 

o A loop must have a single entry point, called the header. This entry point- 
dominates all nodes in the loop, or it would not be the sole entry to theloop. 

o There must be at least one wayto iterate the loop(i.e.)at least one 
path back to the header. 

 

One way to find all the loops in a flow graph is to search for edges in the flow graph whose 
heads dominate their tails. If a→b is an edge, b is the head and a is the tail. These types of edges 
are called as backedg 

 

 

Example: 
 
 

In the above graph, 
 

7 → 4 4 DOM7 

0 →7 7 DOM10 

4 → 3 
 

8 → 3 
 

 

9 →1 
 

The above edges will form loop in flowgraph. 

Given a back edge n → d, we define the natural loop of the edge to be d plus the set 

of nodes that can reach n without going through d. Node d is the header of theloop. 

 

Algorithm: Constructing the natural loop of a back edge. 

Input: A flow graph G and a back edge n→d 

LOOP: 
 

• If we use the natural loops as “the loops”, then we have the useful property that 
unless two loops have the same header, they are either disjointed or one is entirely 
contained in the other. Thus, neglecting loops with the same header for the 
moment, we have a natural notion of inner loop: one that contains no otherloop. 

 
• When two natural loops have the same header, but neither is nested within the 

other, they are combined and treated as a singleloop. 
 

Pre-Headers: 

Several transformations require us to move statements “before the header”. 

Therefore begin treatment of a loop L by creating a new block, called thepreheater. 
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The pre -header has only the header as successor, and all edges which 
formerly entered the header of Lfrom outside L instead enter thepre-header. 

Edges from inside loop L to the header are notchanged. 

Initially the pre-header is empty, but transformations on L may place statements init. 

 

 
 

header pre- 
header 

 
loop L 

 

header 
 

loop L 
 

Reducible flow graphs: 

• Reducible flow graphs are special flow graphs, for which several code optimization 
transformations are especially easy to perform, loops are unambiguously defined, 
dominators can be easily calculated, data flow analysis problems can also be solved 
efficiently. 

• Exclusive use of structured flow-of-control statements such as if-then-else, while-do, 
continue, and break statements produces programs whose flow graphs are always 
reducible. The most important properties of reducible flow graphs are that there are no 
jumps into the middle of loops from outside; the only entry to a loop is through its header. 

 

Definition: 
• A flow graph G is reducible if and only if we can partition the edges into 

twodisjoint groups, forward edges and back edges, with the followingproperties. 
• The forward edges from an acyclic graph in which every node can be reached 

from initial node ofG. 
• The back edges consist only of edges where heads dominate theirstails. 

Example: The above flow graph isreducible. 

 
• If we know the relation DOM for a flow graph, we can find and remove all 

the back edges. 
• The remaining edges are forwardedges. 

• If the forward edges form an acyclic graph, then we can say the flow graphreducible. 

• In the above example remove the five back edges 4→3, 7→4, 8→3, 9→1 and 10→7 
whose heads dominate their tails, the remaining graph isacyclic. 

• The key property of reducible flow graphs for loop analysis is that in such flow graphs 
every set of nodes that we would informally regard as a loop must contain a backedge 

 

PEEPHOLE OPTIMIZATION 

• A statement-by-statement code-generations strategy often produce target code that 
contains redundant instructions and suboptimal constructs .The quality of such target code 
can be improved by applying “optimizing” transformations to the targetprogram. 

• A simple but effective technique for improving the target code is peephole optimization, a 
method for trying to improving the performance of the target program by examining a 
short sequence of target instructions (called the peephole) and replacing these instructions 
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by a shorter or faster sequence, wheneverpossible. 
• The peephole is a small, moving window on the target program. The code in the peephole 

need not contiguous, although some implementations do require this.it is characteristic of 
peephole optimization that each improvement may spawn opportunities for additional 
improvements. 

• We shall give the following examples of program transformations that 
are characteristic of peepholeoptimizations: 

▪ 
Redundant-instructionselimination 

▪ 
Flow-of-controloptimizations 

▪ 
Algebraicsimplifications 

▪ 
Use of machineidioms 

▪ 
UnreachableCode 

 

Redundant Loads And Stores: 
If we see the instructions sequence 

(1) MOVR0,a 

(2) MOVa,R0 
we can delete instructions (2) because whenever (2) is executed. (1) will ensure that the value of a is already 
in register R0.If (2) had a label we could not be sure that (1) was always executed immediately before (2) 
and so we could not remove (2). 

 

INTRODUCTION TO GLOBAL DATAFLOWANALYSIS 

• In order to do code optimization and a good job of code generation , compiler needs to 
collect information about the program as a whole and to distribute this information to 
each block in the flowgraph. 

• A compiler could take advantage of “reaching definitions” , such as knowing where a 
variable like debug was last defined before reaching a given block, in order to perform 
transformations are just a few examples of data-flow information that an optimizing 
compiler collects by a process known as data-flowanalysis. 

Data- flow information can be collected by setting up and solving systems of 
equations of the form: 

out [S] = gen [S] U ( in [S] – kill [S] ) 

 

This equation can be read as “ the information at the end of a statement is either generated within 
the statement , or enters at the beginning and is not killed as control flows through thestatement.” 

• The details of how data-flow equations are set and solved depend on threefactors. 

• The notions of generating and killing depend on the desired information, i.e., on thedata 
flow analysis problem to be solved. Moreover, for some problems, instead of 
proceeding along with flow of control and defining out[s] in terms of in[s], we need to 
proceed backwards and define in[s] in terms ofout[s]. 

• Since data flows along control paths, data-flow analysis is affected by the constructs in a 
program. In fact, when we write out[s] we implicitly assume that there is unique end 
point where control leaves the statement; in general, equations are set up at the level of 
basic blocks rather than statements, because blocks do have unique endpoints. 

• There are subtleties that go along with such statements as procedure calls, 

assignments through pointer variables, and even assignments to arrayvariables. 
 

Data-flow analysis of structuredprograms: 

• Flow graphs for control flow constructs such as do-while statements have a useful 
property: there is a single beginning point at which control enters and a single end point 
that control leaves from when execution of the statement is over. We exploit this property 
when we talk of the definitions reaching the beginning and the end of statements with the 
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followingsyntax. 

 
S id: = E| S; S | if E then S else S | do S 

while E E id + id|id 

• Expressions in this language are similar to those in the intermediate code, but 
the flow graphs for statements have restrictedforms. 

• We define a portion of a flow graph called a region to be a set ofnodes N that 
includes a header, which dominates all other nodes in the region. All edges 
between nodes in N are in the region, except for some that enter the header. 

• The Portion of flow graph corresponding to a statement S is a region that obeysthe 
further restriction that control can flow to just one outside block when it leaves the 
region. 

• We say that the beginning points of the dummy blocks at the entry and exit of a 
statement‟s region are the beginning and end points, respectively, of the 
statement.The equations are inductive, or syntax-directed, definition of the sets 
in[S], out[S], gen[S], and kill[S] for all statementsS. 

• gen[S] is the set of definitions “generated” by S while kill[S] is the set of definitions 
that never reach the end ofS. 

Consider the following data-flow equations for reaching definitions: 

i ) 
 

 

 

 

d : a : = b + c 
S 

 

 
 

gen [S] = { d } 

kill [S] = Da – { d } 

out [S] = gen [S] U ( in[S] – kill[S] ) 

 
Observe the rules for a single assignment of variable a. Surely that assignment is a 
definition of a, say d. ThusGen[S]={d} 

On the other hand, d “kills” all other definitions of a, so we write Kill[S] 
= Da –{d} 

 

 

 

 
Where, Da is the set of all definitions in the program for variable a. 

 

ii 
 

 

 

 

 
S  S1S2 
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gen[S]=gen[S2] U(gen[S1]-kill[S2]) 

Kill[S] = kill[S2] U (kill[S1] – gen[S2]) 

in [S1] = in [S] in [S2] = 
out [S1] out 

[S] = out [S2] 

Under what circumstances is definition d generated by S=S1; S2? First of all, if it is 
generated by S2, then it is surely generated by S. if d is generated by S1, it will reach the 
end of S provided it is not killed by S2. Thus, wewrite 

gen[S]=gen[S2] U (gen[S1]-kill[S2]) 

Similar reasoning applies to the killing of a definition, so we have 
Kill[S] = kill[S2] U (kill[S1] –gen[S2]) 
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Unit-V 
 

OBJECT CODE GENERATION: 

The final phase in our compiler model is the code generator. It takes as input an intermediate 

representation of the source program and produces as output an equivalent target program. 

The requirements traditionally imposed on a code generator are severe. The output code must be 
correct and of high quality, meaning that it should make effective use of the resources of the 
target machine. Moreover, the code generator itself should run efficiently. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ISSUES IN THE DESIGN OF A CODE GENERATOR 
 

While the details are dependent on the target language and the operating system, issues such as 

memory management, instruction selection, register allocation, and evaluation order are inherent 

in almost all code generation problems. 

INPUT TO THE CODE GENERATOR 
 

The input to the code generator consists of the intermediate representation of the source program 

produced by the front end, together with information in the symbol table that is used to determine 

the run time addresses of the data objects denoted by the names in the intermediate 

representation. 

 
There are several choices for the intermediate language, including: linear representations such as 

postfix notation, three address representations such as quadruples, virtual machine representations 

such as syntax trees and dags. 

 
We assume that prior to code generation the front end has scanned, parsed, and translated the 
source program into a reasonably detailed intermediate representation, so the values of names 
appearing in the intermediate language can be represented by quantities that the target machine 
can directly manipulate (bits, integers, reals, pointers, etc.). We also assume that the necessary 
type checking has take place, so type conversion operators have been inserted wherever necessary 
and obvious semantic errors (e.g., attempting to index an array by a floating point number) have 
already been detected. The code generation phase can therefore proceed on the assumption that its 
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input is free of errors. In some compilers, this kind of semantic checking is done together with 
codegeneration. 

TARGET PROGRAMS 

 
The output of the code generator is the target program. The output may take on a variety of 

forms: absolute machine language, relocatable machine language, or assembly language. 

 

Producing an absolute machine language program as output has the advantage that it can be 

placed in a location in memory and immediately executed. A small program can be 

compiled and executed quickly. A number of “student-job” compilers, such as WATFIV and 

PL/C, produce absolute code. 

 
Producing a relocatable machine language program as output allows subprograms to be compiled 

separately. A set of relocatable object modules can be linked together and loaded for execution by 

a linking loader. Although we must pay the added expense of linking and loading if we produce 

relocatable object modules, we gain a great deal of flexibility in being able to compile  

subroutines separately and to call other previously compiled programs from an object module. If 

the target machine does not handle relocation automatically, the compiler must provide explicit 

relocation information to the loader to link the separately compiled program segments. 

Producing an assembly language program as output makes the process of code generation 

somewhat easier .We can generate symbolic instructions and use the macro facilities of the 

assembler to help generate code .The price paid is the assembly step after code generation. 

 
Because producing assembly code does not duplicate the entire task of the assembler, this choice 

is another reasonable alternative, especially for a machine with a small memory, where a 

compiler must uses several passes. 

 
A code-generation algorithm: 

 

The algorithm takes as input a sequence of three-address statements constituting a basic block. 

For each three-address statement of the form x : = y op z, perform the following actions: 

 
Invoke a function getreg to determine the location L where the result of the computation y op 
z should be stored. 

 
Consult the address descriptor for y to determine y‟, the current location of y. Prefer the 

register for y‟ if the value of y is currently both in memory and a register. If the value of 

y is not already in L, generate the instruction MOV y‟ , L to place a copy of y in L. 

 
Generate the instruction OP z‟ , L where z‟ is a current location of z. Prefer a register to a 

memory location if z is in both. Update the address descriptor of x to indicate that x is in 

location L. If x is in L, update its descriptor and remove x from all other descriptors. 

 
If the current values of y or z have no next uses, are not live on exit from the block, and are 
in registers, alter the register descriptor to indicate that, after execution of x : = y op z , those 
registers will no longer contain y or z. 
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Generating Code for Assignment Statements: 
 

The assignment d : = (a-b) + (a-c) + (a-c) might be translated into the following three- 
address code sequence: 

t : = a – b 

u : = a – c 

v : = t + u 

d : = v + u 

with d live at the end. 

Code sequence for the example is: 

Statements Code Generated Register descriptor Address descriptor 

  Register empty  

t : = a – b MOV a, R0 R0 contains t t in R0 

SUB b, R0 

u : = a – c MOV a , R1 R0 contains t t in R0 

SUB c , R1 R1 contains u u in R1 

v : = t + u ADD R1, R0 R0 contains v u in R1 

R1 contains u v in R0 

 

d : = v + u 

 R   

ADD R1, R0 0 contains d d in R0 

 
MOV R0, d 

  d in R0 and memory 

Generating Code for Indexed Assignments 

 

The table shows the code sequences generated for the indexed 

assignment statements a : = b [ i ] and a [ i ] : = b 
 

Statements Code Generated Cost 

a : = b[i] MOV b(Ri), R 2 

a[i] : = b MOV b, a(Ri) 3 

 

Generating Code for Pointer Assignments 
 

The table shows the code sequences generated for the pointer assignments 

a : = *p and *p : = a 
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Statements Code Generated Cost 

a : = *p MOV *Rp, a 2 

*p : = a MOV a, *Rp 2 

 

REGISTER ALLOCATION 
Instructions involving register operands are usually shorter and faster than those involving operands in memory. 

Therefore, efficient utilization of register is particularly important in generating good code. The use of registers is 

often subdivided into two sub problems: 

 

1. During register allocation, we select the set of variables that will reside in registers at 

a point in theprogram. 

 

2. During a subsequent register assignment phase, we pick the specific register that a 

variable will residein. 

 
Finding an optimal assignment of registers to variables is difficult, even with single register 

values. Mathematically, the problem is NP-complete. The problem is further complicated because 

the hardware and/or the operating system of the target machine may require that certain register 

usage conventions be observed. 

 
Certain machines require register pairs (an even and next odd numbered register) for some 

operands and results. For example, in the IBM System/370 machines integer multiplication and 

integer division involve register pairs. The multiplication instruction is of the form 

 
M x,y 

 

where x, is the multiplicand, is the even register of an even/odd register pair. 

The multiplicand value is taken from the odd register pair. The multiplier y is a single register. 

The product occupies the entire even/odd register pair. 

The division instruction is of theform D x,y 

 
where the 64-bit dividend occupies an even/odd register pair whose even register is x; y represents 

the divisor. After division, the even register holds the remainder and the odd register the quotient. 

Now consider the two three address code sequences (a) and (b) in which the only difference is the 

operator in the second statement. The shortest assembly sequence for (a) and (b) are given in(c). 

Ri stands for register i. L, ST and A stand for load, store and add respectively. The optimal 

choice for the register into which „a‟ is to be loaded depends on what will ultimately happen to e. 
 
 

t := a+b t := a +b 

t := t* c t := t +c 

t := t/ d t := t / d 
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(a) fig. 2 Two three address codesequences 
 

L R1, a L R0, a  

A R1, b A R0, b 
 

M R0, c A R0, c 
 

D R0, d SRDA R0, 32 
 

ST R1, t D R0, d ST R1,t 

(a) (b) 
  

THE DAG REPRESENTATION FOR BASIC BLOCKS 

A DAG for a basic block is a directed acyclic graph with the following labels on nodes: 

Leaves are labeled by unique identifiers, either variable names or constants. 

Interior nodes are labeled by an operator symbol. 

Nodes are also optionally given a sequence of identifiers for labels to store 
the computed values. 

DAGs are useful data structures for implementing transformations on basic blocks. 

It gives a picture of how the value computed by a statement is used in 
subsequent statements. 

It provides a good way of determining common sub - expressions 

Input: A basic block 
 

Output: A DAG for the basic block containing the following information: 

 
A label for each node. For leaves, the label is an identifier. For interior nodes, 
an operator symbol. 

For each node a list of attached identifiers to hold the computed values. 

Case (i) x : = y OP z 

Case (ii) x : = OP y 

Case (iii) x : = y 

Method: 
 

Step 1: If y is undefined then create node(y). 
 

If z is undefined, create node(z) for case(i). 
 

Step 2: For the case(i), create a node(OP) whose left child is node(y) and right child is 

node(z). ( Checking for common sub expression). Let n be this node. 

For case(ii), determine whether there is node(OP) with one child node(y). If not 

create such a node. 

For case(iii), node n will be node(y). 

Step 3: Delete x from the list of identifiers for node(x). Append x to the listof attached identifiers for the 
 

node n found in step 2 and set node(x) to n. 
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Example: Consider the block of three- address statements: 

 

t1 := 4* i 
t2 := a[t1] 
t3 := 4* i 
t4 := b[t3] 
t5  := t2*t4 

t6 := prod+t5 

prod := t6 

t7 := i+1 
i := t7 

if i<=20 goto (1) 

 

 

Stages in DAG Construction 
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t6,prod 
 

 

Stniei  cut (9) 

 

 

 

 

 

 

 

 

 

 
 

I0 
 

 

 

tfi,prod 

Final DAG 
 

 

prodo 
 

 

 

 

 

 

 

 
 

7 
20 

 

 

 

10 
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GENERATING CODE FROM DAGs 

 

The advantage of generating code for a basic block from its dag representation is that, from a 

dag we can easily see how to rearrange the order of the final computation sequence than we can 

starting from a linear sequence of three-address statements or quadruples. 

Rearranging the order 

The order in which computations are done can affect the cost of resulting object code. 
 

For example, consider the following basic block: 
t1 : = a + b 
t2 : = c + d 
t3 : = e – t2 

t4  : = t1  – t3 

Generated code sequence for basic block: 

MOV a , R0 

ADD b , R0 

MOV c , R1 

ADD d , R1 

MOV R0 , t1 

MOV e , R0 

SUB R1 , R0 

MOV t1 , R1 

SUB R0 , R1 

MOV R1 , t4 

 
Rearranged basic block: 

Now t1 occurs immediately before t4. 

t2 : = c + d 
t3 : = e – t2 

t1 : = a + b 
t4 : = t1 – t3 

Revised code sequence: 

MOV c , R0 

ADD d , R0 

MOV a , R0 

SUB R0 , R1 

MOV a , R0 

ADD b , R0 

SUB R1 , R0 

MOV R0 , t4 

In this order, two instructions MOV R0 , t1 and MOV t1 , R1 have been saved. 
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